Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(6): e16420, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274652

RESUMO

Objective: Coronavirus disease 2019 (COVID-19) has impacted mental health worldwide, and suicide can be a serious outcome of this. Thus, suicide characteristics were examined before and during the COVID-19 pandemic in Mexico City. Methods: This is a retrospective study including all Mexico City residents who had a coroner's record with a cause of death of intentional self-harm (ICD-10) from January 2016 to December 2021. Results: From 2016 to 2021, 3636 people committed suicide, of which 2869 were males (78.9%) and 767 females (21.1%). From 2016 to 2019 the suicide rate remained constant (∼6 per 100000) and dramatically increased in 2020 (10.45 per 100,000), to return to the levels of the previous year in 2021 (6.95 per 100000). The suicide rate in 2020 specifically increased from January to June (COVID-19 outbreak) in all age groups. Moreover, every year young people (15-24 years) have the maximum suicide rate and depression was the main suicide etiology. Conclusion: The COVID-19 pandemic outbreak increased the suicide rate, regardless of age, but suicide prevalence was higher in males and young people, regardless of the COVID-19 pandemic. These findings confirm that suicide is a complex and multifactorial problem and will allow the establishment of new guidelines for prevention and care strategies.

2.
J Chem Neuroanat ; 121: 102091, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35334275

RESUMO

Aging induces cognitive decline, reduces of synaptic plasticity and increases oxidative reactive species (ROS) in the central nervous system. Traditional medicine has long benefitted from naturally occurring molecules such as curcumin (diferuloymethane). Curcumin is extracted from the plant Curcuma longa and is known for its synaptic and antioxidant-related benefits. In this study, we tested the hypothesis that chronic curcumin treatment reduces cognitive and cellular effects of aging. Curcumin-treated mice showed improved learning and memory using the Morris Water Maze and novel object recognition task. In addition, using the Golgi-Cox stain, curcumin treatment increased spine density in all evaluated regions and increased dendritic arborization in the prefrontal cortex (PFC) layer 3 and CA3 subregion of the hippocampus. Moreover, chronic curcumin exposure increased synaptophysin and actin expression and reduced glial fibrillary acidic protein expression, a marker of astrocytes, in the hippocampus (CA1 and CA3 subregions), while simultaneously reducing the ROS-related molecule, metallothionein 3 expression in the PFC and hippocampus. Collectively, these novel findings suggest that curcumin reduces cognitive, neuronal and astrocytic signs of aging in mice.


Assuntos
Curcumina , Animais , Curcumina/farmacologia , Hipocampo/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios , Espécies Reativas de Oxigênio/metabolismo
3.
Metab Brain Dis ; 37(1): 39-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406560

RESUMO

Alzheimer's disease (AD) is clinically characterized by a progressive loss of cognitive functions and short-term memory. AD patients present two distinctive neuropathological lesions: neuritic plaques and neurofibrillary tangles (NFTs), constituted of beta-amyloid peptide (Aß) and phosphorylated and truncated tau proteins. Aß deposits around cerebral blood vessels (cerebral amyloid angiopathy, CAA) is a major contributor to vascular dysfunction in AD. Vascular amyloid deposits could be early events in AD due to dysfunction in the neurovascular unit (NVU) and the blood-brain barrier (BBB), deterioration of the gliovascular unit, and/or decrease of cerebral blood flow (CBF). These pathological events can lead to decreased Aß clearance, facilitate a neuroinflammatory environment as well as synaptic dysfunction and, finally, lead to neurodegeneration. Here, we review the histopathological AD hallmarks and discuss the two-hit vascular hypothesis of AD, emphasizing the role of neurovascular dysfunction as an early factor that favors vascular Aß aggregation and neurodegeneration. Addtionally, we emphasize that pericyte degeneration is a key and early element in AD that can trigger amyloid vascular accumulation and NVU/BBB dysfunction. Further research is required to better understand the early pathophysiological mechanisms associated with NVU alteration and CAA to generate early biomarkers and timely treatments for AD.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Humanos , Placa Amiloide/metabolismo
4.
J Chem Neuroanat ; 117: 102011, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34384873

RESUMO

Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders characterized by movement and social deficits with rapidly increasing incidence worldwide. Propionic acid (PPA) is a histone deacetylase inhibitor that regulates neuronal plasticity in the brain. Evaluation of the behavioral and cellular consequences of PPA exposure during a critical neurodevelopmental window is required. Therefore, in the present study we aimed to evaluate the effects of prenatal PPA exposure on locomotor behavior and astrocyte number, as well as on levels of nitric oxide (NO), synaptophysin (SYP; a marker of synaptic plasticity), and metallothionein 3 (MT-III; a marker of reactive oxygen species and zinc metabolism), in the prefrontal cortex (PFC) of male rats. All parameters were evaluated at three critical ages of development: postnatal days (PD) 21 (weaning age), PD35 (pre-pubertal age) and PD70 (post-pubertal age). Prenatal PPA exposure induced hypolocomotion and decreased rearing events at weaning age. Moreover, astrogliosis in the PFC was observed in PPA-treated rats at pre- and post-pubertal age. SYP levels were dramatically decreased in PPA-treated rats with simultaneous astrogliosis, suggesting reduced synaptic plasticity. MT-III expression was deregulated in PPA-treated rats. Finally, the expression of NO in the PFC remained unaltered in PPA-treated rats. These results mimic behavioral, neuronal and astrocytic characteristics observed in ASD patients.


Assuntos
Gliose/induzido quimicamente , Gliose/patologia , Locomoção/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Propionatos/toxicidade , Fatores Etários , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/patologia , Feminino , Locomoção/fisiologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
5.
J Alzheimers Dis ; 81(2): 769-785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814431

RESUMO

BACKGROUND: Transmissible spongiform encephalopathies (TSEs) are rare neurodegenerative disorders that affect animals and humans. Bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeld-Jakob Disease (CJD) in humans belong to this group. The causative agent of TSEs is called "prion", which corresponds to a pathological form (PrPSc) of a normal cellular protein (PrPC) expressed in nerve cells. PrPSc is resistant to degradation and can induce abnormal folding of PrPC, and TSEs are characterized by extensive spongiosis and gliosis and the presence of PrPSc amyloid plaques. CJD presents initially with clinical symptoms similar to Alzheimer's disease (AD). In AD, tau aggregates and amyloid-ß protein plaques are associated with memory loss and cognitive impairment in patients. OBJECTIVE: In this work, we study the role of tau and its relationship with PrPSc plaques in CJD. METHODS: Multiple immunostainings with specific antibodies were carried out and analyzed by confocal microscopy. RESULTS: We found increased expression of the glial fibrillary acidic protein (GFAP) and matrix metalloproteinase (MMP-9), and an exacerbated apoptosis in the granular layer in cases with prion disease. In these cases, tau protein phosphorylated at Thr-231 was overexpressed in the axons and dendrites of Purkinje cells and the extensions of parallel fibers in the cerebellum. CONCLUSION: We conclude that phosphorylation of tau may be a response to a toxic and inflammatory environment generated by the pathological form of prion.


Assuntos
Cerebelo/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Doenças Priônicas/patologia , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encefalopatias/metabolismo , Encefalopatias/patologia , Bovinos , Cerebelo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Priônicas/metabolismo , Treonina/metabolismo
6.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670754

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid ß peptide (Aß) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aß clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aß. An increase in Aß amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aß or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide/metabolismo , Animais , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Humanos , Terapia de Alvo Molecular
7.
J Alzheimers Dis ; 79(4): 1517-1531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459640

RESUMO

BACKGROUND: Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are examples of neurodegenerative diseases, characterized by abnormal tau inclusions, that are called tauopathies. AD is characterized by highly insoluble paired helical filaments (PHFs) composed of tau with abnormal post-translational modifications. PSP is a neurodegenerative disease with pathological and clinical heterogeneity. There are six tau isoforms expressed in the adult human brain, with repeated microtubule-binding domains of three (3R) or four (4R) repeats. In AD, the 4R:3R ratio is 1:1. In PSP, the 4R isoform predominates. The lesions in PSP brains contain phosphorylated tau aggregates in both neurons and glial cells. OBJECTIVE: Our objective was to evaluate and compare the processing of pathological tau in PSP and AD. METHODS: Double and triple immunofluorescent labeling with antibodies to specific post-translational tau modifications (phosphorylation, truncation, and conformational changes) and thiazin red (TR) staining were carried out and analyzed by confocal microscopy. RESULTS: Our results showed that PSP was characterized by phosphorylated tau in neurofibrillary tangles (NFTs) and glial cells. Tau truncated at either Glu391 or Asp421 was not observed. Extracellular NFTs (eNFTs) and glial cells in PSP exhibited a strong affinity for TR in the absence of intact or phosphorylated tau. CONCLUSION: Phosphorylated tau was as abundant in PSP as in AD. The development of eNFTs from both glial cells and neuronal bodies suggests that truncated tau species, different from those observed in AD, could be present in PSP. Additional studies on truncated tau within PSP lesions could improve our understanding of the pathological processing of tau and help identify a discriminatory biomarker for AD and PSP.


Assuntos
Emaranhados Neurofibrilares/metabolismo , Neuroglia/patologia , Neurônios/patologia , Paralisia Supranuclear Progressiva/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Paralisia Supranuclear Progressiva/patologia
8.
Mol Psychiatry ; 26(9): 4784-4794, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32555421

RESUMO

It is known that continuous abuse of amphetamine (AMPH) results in alterations in neuronal structure and cognitive behaviors related to the reward system. However, the impact of AMPH abuse on the hippocampus remains unknown. The aim of this study was to determine the damage caused by AMPH in the hippocampus in an addiction model. We reproduced the AMPH sensitization model proposed by Robinson et al. in 1997 and performed the novel object recognition test (NORt) to evaluate learning and memory behaviors. After the NORt, we performed Golgi-Cox staining, a stereological cell count, immunohistochemistry to determine the presence of GFAP, CASP3, and MT-III, and evaluated oxidative stress in the hippocampus. We found that AMPH treatment generates impairment in short- and long-term memories and a decrease in neuronal density in the CA1 region of the hippocampus. The morphological test showed an increase in the total dendritic length, but a decrease in the number of mature spines in the CA1 region. GFAP labeling increased in the CA1 region and MT-III increased in the CA1 and CA3 regions. Finally, we found a decrease in Zn concentration in the hippocampus after AMPH treatment. An increase in the dopaminergic tone caused by AMPH sensitization generates oxidative stress, neuronal death, and morphological changes in the hippocampus that affect cognitive behaviors like short- and long-term memories.


Assuntos
Anfetamina , Metalotioneína 3 , Anfetamina/farmacologia , Hipocampo , Aprendizagem , Neurônios
9.
Front Cell Neurosci ; 14: 247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132840

RESUMO

Worldwide, around 50 million people have dementia. Alzheimer's disease (AD) is the most common type of dementia and one of the major causes of disability and dependency among the elderly worldwide. Clinically, AD is characterized by impaired memory accompanied by other deficiencies in the cognitive domain. Neuritic plaques (NPs) and neurofibrillary tangles (NFTs) are histopathological lesions that define brains with AD. NFTs consist of abundant intracellular paired helical filaments (PHFs) whose main constituent is tau protein. Tau undergoes posttranslational changes including hyperphosphorylation and truncation, both of which favor conformational changes in the protein. The sequential pathological processing of tau is illustrated with the following specific markers: pT231, TG3, AT8, AT100, and Alz50. Two proteolysis sites for tau have been described-truncation at glutamate 391 and at aspartate 421-and which can be demonstrated by reactivity with the antibodies 423 and TauC-3, respectively. In this review, we describe the molecular changes in tau protein as pre-NFTs progress to extracellular NFTs and during which the formation of a minimal nucleus of the filament, as the PHF core, occurs. We also analyzed the PHF core as the initiator of PHFs and tau phosphorylation as a protective neuronal mechanism against the assembly of the PHF core.

10.
Synapse ; 74(11): e22177, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32531811

RESUMO

Recent reports on brain aging suggest that oxidative stress and inflammatory processes contribute to aging. Interestingly, sodium phenylbutyrate (PBA) is an inhibitor of histone deacetylase, which has anti-inflammatory properties. Several reports have suggested the effect of PBA on learning and memory processes, however there are no studies of the effect of this inhibitor of histone deacetylase on aging. Consequently, in the present study, the effect of PBA was studied in 18-month-old mice. The animals were administered PBA for 2 months after locomotor activity treatment and Morris water maze tests were performed. The Golgi-Cox staining technique and immunohistochemistry for glial fibrillary acidic protein (GFAP) and synaptophysin were performed for the morphological procedures. The administration of PBA improves learning and memory according to the Morris water maze test compared to vehicle-treated animals, which had unchanged locomotor activity. Using Golgi-Cox staining, dendritic length and the number of dendritic spines were measured in limbic regions, such as the nucleus accumbens (NAcc), prefrontal cortex (PFC) layer 3, and the CA1 of the dorsal hippocampus. In addition, PBA increased the number of dendritic spines in the PFC, NAcc, and CA1 subregions of the hippocampus with an increase in dendritic length only in the CA1 region. Moreover, PBA reduced the levels of the GFAP and increased the levels of synaptophysin in the studied regions. Thus, PBA can be a useful pharmacological tool to prevent or delay synaptic plasticity damage and cognitive impairment caused by age.


Assuntos
Envelhecimento/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fenilbutiratos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos , Plasticidade Neuronal , Núcleo Accumbens/crescimento & desenvolvimento , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Sinaptofisina/metabolismo
11.
J Alzheimers Dis ; 76(3): 853-862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32568191

RESUMO

We recently developed the National Dementia Biobank in México (BioBanco Nacional de Demencias, BND) as a unit for diagnosis, research, and tissue transfer for research purposes. BND is associated with the Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Mexico. The donation of fluids, brain, and other organs of deceased donors is crucial for understanding the underlying mechanisms of neurodegenerative diseases and for the development of successful treatment. Our laboratory research focuses on 1) analysis of the molecular processing of the proteins involved in those neurodegenerative diseases termed tauopathies and 2) the search for biomarkers for the non-invasive and early diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Bancos de Espécimes Biológicos , Encéfalo/patologia , Doenças Neurodegenerativas/patologia , Tauopatias/patologia , Bancos de Espécimes Biológicos/normas , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , México , Proteínas tau/metabolismo
12.
J Chem Neuroanat ; 104: 101734, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31887346

RESUMO

The aged brain has biochemical and morphological alterations in the dendrites of the pyramidal neurons of the limbic system, which consequently trigger motor and cognitive deficits. Bexarotene 4-[1-(3,5,5,8,8-pentamethyl-6,7-dihydronaphthalen-2-yl)ethenyl]benzoic acid is a selective agonist of X-retinoid receptors which acts by binding to the intracellular retinoic acid receptors (RAR). It decreases oxidative and inflammatory activity, in addition to the transport of lipids, mechanisms that together could have a neuroprotective effect. Our objective was to evaluate the effect of bexarotene on the motor and cognitive processes, as well as its influence on the dendritic morphology of neurons in the limbic system of elderly mice. Dendritic morphology was evaluated with the Golgi-Cox staining procedure followed by the Sholl analysis. Bexarotene was administered at different doses: 0.0; 0.5; 2.5 and 5.0 mg/kg for 60 days in 18-month-old mice. After the treatment, locomotor activity in a novel environment and spatial memory in the water labyrinth were evaluated. Mice treated with bexarotene did not show significant changes in their behavior. Moreover, bexarotene-treated mice only showed a significant increase in the density of the dendritic spines and the dendritic length in the nucleus accumbens (NAcc) neurons. In conclusion, the administration of bexarotene improves the plasticity of the NAcc of aged mice, and therefore could be a pharmacological alternative to prevent or delay neuroplasticity disruptions in brain aging.

13.
Neuroscience ; 406: 594-605, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797024

RESUMO

Schizophrenia is a severe mental disorder with numerous etiological susceptibilities. Maternal infection is a key risk factor for schizophrenia. Prenatal lipopolysaccharide (LPS) infection stimulates cytokine production that affects brain development. In the present study, we aimed to investigate the effect of prenatal LPS injection at gestational day (GD) 14-16 on behavioral paradigms, and neuronal morphology in the prefrontal cortex (PFC), basolateral amygdala (BLA), nucleus accumbens (NAcc) and ventral hippocampus (VH) at two critical ages of development: pre-pubertal (postnatal day 35, PD35) and post-pubertal (PD60) age in male rats. We also evaluated the effects of LPS on nitric oxide (NO) and zinc (Zn) levels in seven brain areas (PFC, VH, amygdala, brainstem, striatum and dorsal hippocampus) at PD35 and PD60. LPS induced hyperlocomotion in a novel environment and reduced social contact as well as increased the levels of NO and Zn in the PFC, brainstem and amygdala as observed in other animal models of schizophrenia-related behavior. Furthermore, we found that LPS-treated rats presented post-pubertal neuronal hypertrophy in the PFC and BLA and decreased spine density in the NAcc. The neuronal morphology of neurons in the VH in LPS-treated rats remained unaltered. Interestingly, the anxiogenic-related behavior correlated with neuronal hypertrophy observed in the BLA. Our findings suggest that the behavioral and neural modifications observed in our model could be mediated by the long-lasting alterations in Zn and NO levels in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Óxido Nítrico/metabolismo , Zinco/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/imunologia , Estimulantes do Sistema Nervoso Central/farmacologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/imunologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/imunologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/imunologia , Ratos Sprague-Dawley
14.
J Chem Neuroanat ; 96: 7-15, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30423351

RESUMO

Suicidal behavior is a complex human behavior and current data suggests that suicide is an increasing cause of death among young people. The neurobiology of suicide is unknown and data investigating the role of the pituitary in suicidal behavior is scarce. Imaging data suggests that this gland increases in size in patients with major depression and recent data implicates hyperactivity of the hypothalamus-pituitary-adrenal axis in suicidal behavior. In this study, we evaluate the size and number of cells as well as markers related to oxidative stress and lipid peroxidation of the anterior and posterior sections of the pituitary gland of male suicide completers. Stereological analysis is used to quantify the total cell number in anterior- and posterior-pituitary regions. We examined nitric oxide (NO) levels, Zinc (Zn) levels, superoxide dismutase (SOD) activity, 4-hydroxy-alkenals (4-HDA), malondialdehyde (MDA) and metallothioneins (MTs). Our results indicate that the anterior-pituitary region of suicide completers exhibits increased weight, likely due to an enhanced number of cells compared to the control group. In addition, we found a reduction of NO levels with higher SOD activity in the anterior-pituitary region of suicide victims. No changes in Zn, MDA, MTs, 4-HDA or MDA were observed in tissue of suicide completers compared to the control group. This study demonstrates that there is an increased number of cells, with an imbalance in oxidative stress without a process of lipid peroxidation in the anterior-pituitary region of young male suicide completers.


Assuntos
Óxido Nítrico/metabolismo , Adeno-Hipófise/patologia , Suicídio Consumado , Superóxido Dismutase/metabolismo , Humanos , Masculino , Adeno-Hipófise/metabolismo , Adulto Jovem
15.
Synapse ; 72(8): e22036, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740871

RESUMO

Aging is a stage of life where cognitive and motor functions are impaired. This is because oxidative and inflammatory processes exacerbate neurodegeneration, which affects dendritic morphology and neuronal communication of limbic regions with memory loss. Recently, the use of trophic substances has been proposed to prevent neuronal deterioration. The neuropeptide-12 (N-PEP-12) has been evaluated in elderly patients with dementia, showing improvements in cognitive tasks due to acts as a neurotrophic factor. In the present work, we evaluated the effect of N-PEP-12 on motor activity and recognition memory, as well as its effects on dendritic morphology and the immunoreactivity of GFAP, Synaptophysin (SYP), and BDNF in neurons of the prefrontal cortex (PFC), dorsal hippocampus (DH) and nucleus accumbens (NAcc) of aged rats. The results show that N-PEP-12 improved the recognition memory, but the motor activity was not modified compared to the control animals. N-PEP-12 increases the density of dendritic spines and the total dendritic length in neurons of the PFC (layers 3 and 5) and in DH (CA1 and CA3). Interestingly NAcc neurons showed a reduction in the number of dendritic spines. In the N-PEP-12 animals, when evaluating the immunoreactivity for SYP and BDNF, there was an increase in the three brain regions, while the mark for GFAP decreased significantly. Our results suggest that N-PEP-12 promotes neuronal plasticity in the limbic system of aged animals, which contributes to improving recognition memory. In this sense, N-PEP-12 can be considered as a pharmacological alternative to prevent or delay brain aging and control senile dementias.


Assuntos
Envelhecimento/efeitos dos fármacos , Aminoácidos/farmacologia , Sistema Límbico/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Límbico/metabolismo , Sistema Límbico/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Sprague-Dawley , Reconhecimento Psicológico/fisiologia , Sinaptofisina/metabolismo
16.
Mol Neurobiol ; 55(11): 8625-8636, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582396

RESUMO

Apomorphine is a dopamine receptor agonist that activates D1-D5 dopamine receptors and that is used to treat Parkinson's disease (PD). However, the effect of apomorphine on non-motor activity has been poorly studied, and likewise, the effects of dopaminergic activation in brain areas that do not fulfill motor functions are unclear. The aim of this study was to determine how dopamine receptor activation affects behavior, as well as plasticity, morphology, and oxidative stress in the hippocampus. Adult mice were chronically administered apomorphine (1 mg/kg for 15 days), and the effects on memory and learning, synaptic plasticity, dendritic length, inflammatory responses, and oxidative stress were evaluated. Apomorphine impaired learning and long-term memory in mice, as evaluated in the Morris water maze test. In addition, electrophysiological recording of field excitatory postsynaptic potentials (fEPSP) indicated that the long-term potentiation (LTP) of synaptic transmission in the CA1 region of the hippocampus was fully impaired by apomorphine. In addition, a Sholl analysis of Golgi-Cox stained neurons showed that apomorphine reduced the total length of dendrites in the CA1 region of the hippocampus. Finally, there were more reactive astrocytes and oxidative stress biomarkers in mice administered apomorphine, as measured by GFAP immunohistochemistry and markers of redox balance, respectively. Hence, the non-selective activation of dopaminergic receptors in the hippocampus by apomorphine triggers deficiencies in learning and memory, it prevents LTP, reduces dendritic length, and provokes neuronal damage.


Assuntos
Apomorfina/farmacologia , Hipocampo/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Hipocampo/efeitos dos fármacos , Inflamação/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Oxirredução , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Aprendizagem Espacial/efeitos dos fármacos
17.
Synapse ; 71(10): e21991, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681457

RESUMO

It is well known that the survival is higher in women compared to men and women have a better survival prognosis than men in some pathologies such as vascular dementia (VD). Our previous reports showed that the spontaneously hypertensive (SH) rat, an animal model of VD, exhibited dendritic atrophy of pyramidal neurons of the dorsal hippocampus (DH) and the prefrontal cortex (PFC) at 8 months of age. Cerebrolysin (CBL), a neurotrophic peptide mixture, reduces dendritic atrophy and improves the memory process in aged rats. Here, we investigated whether one pregnancy or/and CBL was capable of improving cognitive behavior and neuronal alterations in old female SH rats. Diastolic and systolic blood pressure were assessed before pregnancy (3 months old) and CBL administration (6 months old), and after CBL administration (12 months old). Immediately after of 6 months of CBL treatment, locomotor activity in novel environments and memory and learning by the Morris Water Maze test were evaluated. By the Golgi-Cox staining method, dendritic parameters were assessed in PFC and DH. Our results suggest that rats with one pregnancy showed better memory with an enhancement in dendritic length and dendritic spine density in the aforementioned regions.

18.
J Chem Neuroanat ; 77: 68-77, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27208629

RESUMO

Amphetamines (AMPH) are psychostimulants widely used for therapy as well as for recreational purposes. Previous results of our group showed that AMPH exposure in pregnant rats induces physiological and behavioral changes in the offspring at prepubertal and postpubertal ages. In addition, several reports have shown that AMPH are capable of modifying the morphology of neurons in some regions of the limbic system. These modifications can cause some psychiatric conditions. However, it is still unclear if there are changes to behavioral and morphological levels when low doses of AMPH are administered at a juvenile age. The aim of this study was to assess the effect of AMPH administration (1mg/kg) in Sprague-Dawley rats (postnatal day, PD21-PD35) on locomotor activity in a novel environment and compare the neuronal morphology of limbic system areas at three different ages: prepubertal (PD 36), pubertal (PD50) and postpubertal (PD 62). We found that AMPH altered locomotor activity in the prepubertal group, but did not have an effect on the other two age groups. The Golgi-Cox staining method was used to describe the neural morphology of five limbic regions: (Layers 3 and 5) the medial prefrontal cortex (mPFC), the dorsal and ventral hippocampus, the nucleus accumbens and the amygdala, showing that AMPH induced changes at pubertal ages in arborization and spine density of these neurons, but interestingly these changes did not persist at postpubertal ages. Our findings suggest that even early-life AMPH exposure does not induce long-term behavioral and morphological changes, however it causes alterations at pubertal ages in the limbic system networks, a stage of life strongly associated with the development of substance abuse behaviors.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Sistema Límbico/citologia , Sistema Límbico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Envelhecimento , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Feminino , Sistema Límbico/crescimento & desenvolvimento , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Maturidade Sexual
19.
J Biomed Sci ; 22: 59, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198255

RESUMO

BACKGROUND: The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) influences nigral dopaminergic neurons via autocrine and paracrine mechanisms. The reduction of BDNF expression in Parkinson's disease substantia nigra (SN) might contribute to the death of dopaminergic neurons because inhibiting BDNF expression in the SN causes parkinsonism in the rat. This study aimed to demonstrate that increasing BDNF expression in dopaminergic neurons of rats with one week of 6-hydroxydopamine lesion recovers from parkinsonism. The plasmids phDAT-BDNF-flag and phDAT-EGFP, coding for enhanced green fluorescent protein, were transfected using neurotensin (NTS)-polyplex, which enables delivery of genes into the dopaminergic neurons via neurotensin-receptor type 1 (NTSR1) internalization. RESULTS: Two weeks after transfections, RT-PCR and immunofluorescence techniques showed that the residual dopaminergic neurons retain NTSR1 expression and susceptibility to be transfected by the NTS-polyplex. phDAT-BDNF-flag transfection did not increase dopaminergic neurons, but caused 7-fold increase in dopamine fibers within the SN and 5-fold increase in innervation and dopamine levels in the striatum. These neurotrophic effects were accompanied by a significant improvement in motor behavior. CONCLUSIONS: NTS-polyplex-mediated BDNF overexpression in dopaminergic neurons has proven to be effective to remit hemiparkinsonism in the rat. This BDNF gene therapy might be helpful in the early stage of Parkinson's disease.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Neurônios Dopaminérgicos , Neurotensina , Doença de Parkinson , Substância Negra , Transfecção/métodos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Terapia Genética/métodos , Masculino , Neurotensina/química , Neurotensina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Ratos , Ratos Wistar , Receptores de Neurotensina/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia
20.
Synapse ; 68(3): 114-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24265191

RESUMO

Several studies in rodents have suggested the inactivation of the subthalamic nucleus (STN) as an alternative strategy to Parkinson's disease (PD) treatment. The STN is part of the basal ganglia and plays an important role in the motor function; however, recent data suggest that this structure has a critical role in the cognitive function of the limbic system. The STN receives direct projection from the prefrontal cortex (PFC), structure interconnected with the hippocampus and both structures send excitatory projections to the nucleus accumbens (NAcc). Here, we determined whether and which changes occurred 4 weeks after a STN lesion in the dendritic morphology of pyramidal neurons of the layers 3 and 5 of the PFC and basolateral amygdala, neurons of the ventral hippocampus, and the medium spiny neurons of the NAcc and caudate-putamen. Dendritic morphology was measured using the Golgi-Cox procedure followed by Sholl analysis. We also evaluated the effects of STN lesion on locomotor behavior assessed by an open field test, social interaction, acoustic startle response, prepulse inhibition, and locomotor activity induced by a novel environment and amphetamine. We found that STN damage induced a deficit in locomotion measured by open field test with neuronal hypertrophy in PFC (layer 5) and reduced spinogenesis in CA1 ventral hippocampus and PFC (layer 3). Taken together, these data suggest that the behavioral and morphological effects of STN lesion are, at least partially, mediated by limbic subregions with possible consequences for cognitive-related behaviors observed in PD treatment.


Assuntos
Dendritos/patologia , Hipocampo/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Núcleo Subtalâmico/lesões , Tonsila do Cerebelo/patologia , Animais , Núcleo Caudado/patologia , Espinhas Dendríticas/patologia , Masculino , Atividade Motora , Núcleo Accumbens/patologia , Putamen/patologia , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley , Filtro Sensorial , Comportamento Social , Núcleo Subtalâmico/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...